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Abstract. Effective speakers engage their whole body when they ges-
ture. It is difficult, however, to create such full body motion in animated
agents while still supporting a large and flexible gesture set. This pa-
per presents a hybrid system that combines motion capture data with
a procedural animation system for arm gestures. Procedural approaches
are well suited to supporting a large and easily modified set of gestures,
but are less adept at producing subtle, full body movement. Our sys-
tem aligns small motion capture samples of lower body movement, and
procedurally generated spine rotation, with gesture strokes to create con-
vincing full-body movement. A combined prediction model based on a
Markov model and association rules is used to select these clips. Given
basic information on the stroke, the system is fully automatic. A user
study compares three cases: the model turned off, and two variants of
our algorithm. Both versions of the model were shown to be preferable
to no model and guidance is given on which variant is preferable.

Key words: Embodied Conversational Agents, Posture Synthesis, Mo-
tion Capture

1 Introduction

When creating virtual agents, the designer is caught between two main animation
options, each with their inherent trade-offs. Procedural motion generation offers
excellent control, allowing the agent to flexibly respond to a range of situations
and generate a very large set of gestures. This flexibility, however, comes at the
cost of extra work and/or realism as it is difficult to generate highly realistic
motion using procedural methods. On the other hand, motion capture-based
approaches provide an easier method to obtain realistic motion that engages the
entire body, but control is generally limited.

In this paper, we present a hybrid system that uses procedural generation for
arm gestures and motion capture data to add realistic body movement3. Our pro-
cedural methods for arm gesture are based on previously published techniques [1,
2]. The contribution of this work is a system for engaging the rest of the body,

3 Animation samples can be found on http://www.cs.ucdavis.edu/~neff/

pengcheng/
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using motion capture data to control the lower body, augmented with procedu-
ral generation of body rotations. The approach leverages off the strengths of the
two animation techniques: using procedural generation for arm gestures, where
maximal control is necessary, while using motion capture to generate full body
engagement and increase the realism of the final motion.

Inspired by Lamb’s theory of body-gesture merger [3], discussed below, our
algorithm aligns the character’s body movement with the stroke phase of gestures
to engage the total body in creating a gesture. The rules for this alignment are
based on a statistical model built from a sample speaker. It uses both a Markov
model and association rules to predict a desired weight shift and body orientation
for each stroke. The system then searches for a short piece of motion capture
data to satisfy these goals and uses it to control the lower body movement during
the stroke. Rotation of the spine is also added procedurally. We evaluate our
model in a user study that compares three cases: our body-engagement model
turned off and two variants of our model, one that uses motion capture to in-fill
body motion between strokes and one that uses interpolation and hold phases
for this in-fill. The study showed with high significance that both models were
preferable to no model. It also showed that the motion capture gap filling model
was preferable to the gap filling based on interpolation. Sample frames from
animation produced by our system are shown in Figure 1.

Fig. 1. Sample frames showing our algorithm used to add postural movement to a
gesture sequence.

This paper makes two main contributions. First, it presents an effective algo-
rithm for automatically augmenting animations of arm gestures with appropriate
postural movement. The resulting system allows a very wide range of gestures to
be generated with a higher degree of naturalness than was previously possible.
The algorithm is validated with a user study. The second contribution is a study
that indicates a strong preference for the continuous use of motion capture data
rather than a mix of motion capture data with interpolation and short holds.
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This suggests that continuous movement may be an important factor in the
generating positive perceptions of virtual agents.

2 Background

2.1 Gesture and Posture Study

In his pioneering work, Lamb [3] argued that there were two broad classes of
movers, those that made arm gestures largely independently of postural changes
and those that effectively merged posture changes with gesture. He argued that
this posture-gesture merger in the latter group led to much more effective move-
ment. This idea provided the key motivation for aligning posture changes with
gesture strokes in our model.

Cassell et al. [4] conducted an analysis of posture shifts in monologue and
dialogues. They predicted posture shift as a function of discourse state in mono-
logues and discourse state and conversation state in dialogues. We instead focus
on more ongoing motion aligned with gesture strokes.

Gesture has been previously described in terms of phases, phrases and units
[5–8], where a single gesture consists of a series of consecutive phases:

gesture → [ preparation ] [ hold ] stroke [ hold ] (1)

We use this same structure in our work and in particular, use the stroke place-
ment to align our posture movement. Previous work has used this structure in
recreating gesture animation [2, 1].

For statistical modeling, Lee and Marsella [9] used a Hidden Markov model
to generate head movements for virtual agents. In a very different domain, Khalil
et al. [10] performed statistical modeling that combined association rules and a
Markov model to predict web users’ behavior and their next movement.

2.2 Animation Methods

There are a diverse set of papers on using motion capture in animation. A few
of the most relevant works include Arikan et al.s’[11] synthesis of motions by
controlling the qualitative annotations of motion clips. Pullen and Bregler [12]
developed a conceptually similar approach for creating motions by considering
the motion capture data as a texture to be applied to more simple key framed
animation, but did not apply their work to gesturing characters, made no use of
gesture structure and used a very different formulation based on a frequency de-
composition. Arikan et al. [13] and Kovar et al. [14] proposed similar methods us-
ing motion graphs to connect motion clips together. Wang and Bodenheimer [15]
studied the best parameters to use when doing linear blends to connect motion
clips together.

Stone et al. [16] present a system for using motion capture to animate a con-
versational agent. They use motion capture to control the entire body, whereas
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our approach combines motion capture with a more flexible, procedural approach
for gesture generation.

The procedural animation system for gestures follows the work of Neff et
al. [1] which combines a statistical method for predicting gesture selection and
placement with a procedural animation system to create an animated character
that could gesture in synchrony with speech. In related work, the SmartBody
engine [17] offers another way to combine different animation modalities.

3 Acquiring and Analyzing Input Motion

The algorithm augments procedural arm gestures with lower body motion and
rotation. The rules for doing this are determined by analyzing sample data of a
subject whose body engagement is considered desirable. This input data is used
both in determining these rules and as the source motion data that is used in
the reconstruction.

For our input data, we had a subject recite several versions of Shakespeare’s
famous Marc Antony speech “Friends, Romans, Countrymen...” while being both
filmed and motion captured with an optical motion capture system [18]. This
provided data of a long monologue, which we analyzed both in terms of speech
and motion data. We manually annotated the data using the software package
ANVIL [19]. This annotation included gesture phrase, gesture phase, the number
of stroke repetitions and the hand used in each phrase (right hand, left hand or
both hands). A trained coder can annotate 1 minute of video in ca. 25 mins.

The motion analysis began by reconstructing an animation skeleton from the
motion capture data to obtain joint angle data. This data was then processed to
extract a number of key parameters that were hypothesized to be important in
lower body movement: center of mass (COM) and foot locations, swivel angles of
the legs, pelvic rotation, and knee angles. A correlation analysis was performed
across this data. It revealed that, taken together, the COM position and rotation
of the pelvis around the vertical axis (pelvisY ) were well correlated with the other
data, having a correlation coefficient higher than 0.6. Some parameters correlated
well with COM and others with pelvic rotation. Figure 2 shows an example of
how the leg swivel data is correlated with the pelvis rotation. Based on this
analysis, we determined that these two parameters effectively characterized the
major lower body motion. We therefore focused on accurately reconstructing
them in order to add lower body motion to new clips.

4 Statistical model for posture prediction

For the domain of talking characters, lower body movement can be divided
into two categories: movement co-occurring with gesture and movement not co-
occuring with gesture, also known as idle movement. We segment the lower body
motion based on this definition and use the posture information at the end of
each gesture phrase for analysis and modeling.
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Fig. 2. In a plot of leg swivel data and pelvis data for a motion clip, a clear correla-
tion can be seen between the data. Top: PelvisY ; middle: LeftFootSwivel; bottom:
RightFootSwivel.

4.1 Markov Model

Posture configurations can be roughly defined into three categories for each
of our posture parameters. For the center of mass, it contains the categories:
weight shifted to the left foot, weight shifted to the right foot, and balance in
the center of the two feet. The pelvis rotation around the vertical axis has three
directions: facing left, facing right and facing front. Intuitively, having a variety
of posture positions at the end of phrases makes motions more realistic. Imagine
if a character consistently returns back to the exact same position at the end of
a gesture, the motion will not be realistic. While using only three categories per
parameter, our system will support a range of end poses within each category
to avoid repetitive motion.

A Markov model is commonly used in modeling time series sequences. For
example, Kipp et al. [2, 1] used Markov models for modeling handedness and
gesture sequences. Inspired by their work, we use a Markov approach for mod-
eling the continuous posture sequence information. Let X be the end posture at
each phrase, and n stands for the index of the phrase in the whole sequence. For
a Markov chain:

P (Xn+1|Xn, Xn−1, · · ·) = P (Xn+1|Xn) (2)

Or in words, the future state depends only on the present state and the past
can be ignored. While this model captures some of the modeled individual’s
tendency to make weight shifts or rotations, it is not complete. For instance, it
does not take into consideration the choice of synchronizing particular postures
with given gestures. We turn our attention to that next.

4.2 Association Rules

We postulated that a person’s posture changes (rotation and weight shifts) would
be related to the form of the gesture they were performing. Different gestures
would potentially lead to different posture changes. For example, a person may
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tend to shift his weight right when using his right hand. Modeling these prop-
erties has two benefits. It provides a better choice of posture change for a given
gesture. It also adds more variation into the transition probability from one
posture to the next. This will provide greater variation over a sequence.

Association rules are one of the most important concepts in data mining
and commonly used in finding association patterns in a series of data sequences.
Given a set of transactions, association rules will find useful hidden rules, given
some threshold, to help predict values in the future. Generally speaking, there
are two important metrics: one is the support and the other is the confidence.
Suppose there are two itemsets X and Y where an itemset is just a set of
observed attributes (e.g. a left body rotation with a left-handed cup gesture and
no weight shift). The support count of X is the fraction of transactions in the
database that contain X. Confidence measures how often items in Y appear in
transactions that contain X and can be interpreted as an estimate of P (Y |X).

We use association rules to model the relationship between gesture types and
posture positions at the end of gestures. Each gesture phrase is a transaction
in our model which contains the information of handedness (H), gesture lexeme
(L) (e.g. a “cup” gesture or “frame” gesture) and an end of phrase posture
description including the center of mass position (C) and the direction of body
rotation (B).

To calculate the confidence of the center of mass position, we have the fol-
lowing formulas.

Support(H) = count(H)/totalcount
Support(L) = count(L)/totalcount
Support(C) = count(C)/totalcount
Confidence(C|H) = count(C ∩H)/count(H)
Confidence(C|L) = count(C ∩ L)/count(L)
Confidence(C|H,L) = count(C ∩H ∩ L)/count(H ∩ L)
Where totalcount is the number of transactions appearing in the database.
Since there are many gesture lexemes and three handedness type, we will find

a variety of association rules, but not all of them will have enough data support
to be meaningful. Thus we first used a threshold filter on the itemsets to remove
those that have too small a support number and are not considered meaningful.
We then set up another threshold to filter the association rules whose confidence
is small. The same strategy is used for prediction rules for body rotation. In the
end, we are left with a list of useful association rules for each category of COM
position and body rotation direction with satisfactory support and confidence
values.

4.3 Combining Prediction Rules

The final prediction of the body movement is made by combining the output of
the Markov model and the association rules. The input to the system is the initial
center of mass position (IC), the gesture lexeme (L) and Handedness (H). We
will get the probability of transition from IC to three categories of center of mass
using the probability PM calculated from Markov model. In addition, we take
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the highest confidence value from our association rules and denote that as PC,
which also describe the probability of transition from IC to the three categories
of center of mass at the end of the phrase. The final probability distribution is
defined as:

P = αPM + βPC (3)

where β was experimentally set to between 0.6 and 0.7 and α = 1−β. The same
approach is used in predicting final body rotation direction. Since center of mass
has three possibilities, and body rotation has three possibility, thus in total there
are 9 possibilities in describing the final posture. We have a probability distribu-
tion that gives the odds of each of these occurring and we randomly sample from
this distribution to choose the actual posture change. By changing our random
seed, we can produce different motion sequences from a given distribution.

5 Animation Methods

5.1 Motion Capture

Motion capture has recently become a widely used alternative to keyframe or
procedural techniques in the animation community. Compared with these tradi-
tional methods, motion capture will provide more detailed motions which were
difficult to model previously. However few papers have addressed how to use this
method to model lower body motion. Egges et al. [20] built up a general frame-
work to insert idle movement into general animation. We use similar approaches
in modeling idle movement but do so in a different reconstruction framework
and within a larger system that focuses on aligning body motion with gesture.

5.2 Selection and Reconstruction of Co-occurring Motion Clips

The reconstruction method works in two stages. First, it finds appropriate mo-
tion capture clips to align with each stroke, as described below. Second, it fill in
the gaps between these clips, as described in the following subsection.

The motion capture data used to generate posture movement is first pre-
processed. The motions are divided into segments that co-occur with each gesture
phrase in the sample and assigned to 9 groups based on their center of mass and
pelvis rotation information. The motion samples used in the reconstruction are
chosen one-by-one from this set according to the motion prediction rules to align
lower body movement with co-occurring gestures. The motions are reconstructed
as follows:

First, lower body motion clips are aligned with the end of stroke. Before
working with our data, a butterworth filter is applied to the motion to smooth
out small jerks. For our sample data, if there is an extreme value (minimum
or maximum) within the phrase we then calculated the time difference between
extreme values, where the velocity equals 0, and the end of the stroke. We found
that the extreme for the pelvis rotation is usually between 0 and 10 percent
of the average phrase duration before the end of the stroke. The end of the
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horizontal COM shift is usually between 0 and 20 percent of the average phrase
time after the end of the stroke. This means that the pelvis usually stops a
little before the end of stroke and the center of mass usually stops a little bit
after the end of stroke which supports our assumption that the posture change
usually stops around the end of stroke if it is going to pause within the phrase.
While interesting, these conclusions are drawn on limited data for one speaker,
so general conclusions about human movement should not be drawn.

Since there are many candidate motions for each clip selection, we select
motions whose starting point has the smallest velocity difference from the aver-
age velocity over the idle duration as illustrated in Figure 3. The difference is
calculated by

Diff = VS − VA (4)

where Diff is the difference, VS is the velocity at the starting point of the
phrase for the next clip and VA is the average velocity of the idle movement. The
velocities are the summed difference velocities of the COM and pelvis rotation.
Ensuring a small velocity difference helps ensure realistic motion.

Fig. 3. Clips are chosen to minimize the velocity difference in order to help produce
smooth motion.

In some cases, two consecutive selected motions will have a large gap between
their end points that must be spanned in a short time. This can lead to unreal-
istically rapid movement. Instead, we find a path from the end of the previous
motion to a point further ahead in time on the next motion that is closer to
the previous motion’s end state. This case is shown in Figure 4. The adjustment
produces smoother overall motion.

Fig. 4. For rapid transitions, the next clip, shown in blue is truncated to allow a more
direct transition from the previous clip.

Sometimes, the postures predicted for the end of consecutive phrases will fall
in the same category. In order to create more continuous motion in these cases,
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the algorithm finds longer, continuous motion clips from the mocap data to fit
this sequence of motions.

5.3 Idle Motion Reconstruction

Fig. 5. Once motion clips, the thick blue curves, are aligned with the gestures, the
remaining gaps must be filled using either interpolatuion or additional clips, as repre-
sented by the thin red curve.

At this point, the system has a partial specification of lower body movement,
with short clips aligned with each gesture stroke and gaps in between. The task
now is to fill these gaps, the so-called idle movement, as shown in Figure 5. We
designed two strategies for this. The first is to fill the gaps by selecting appropri-
ate mocap clips and blending them into the overall motion stream. The second
is to use a combination interpolation and short holds where the interpolation
would be too slow. The effectiveness of the two strategies is compared in the
user study presented in Section 6. The strategies are described below.

Motion Capture Gap Filling When filling gaps with motion capture clips,
we search the mocap database to find the correct duration of motion to fit the
idle gap. Motion clips are selected based on their distance from the motions
that have already been specified at the two ends of the gap. A sliding win-
dow is used to define how many frames are compared. Let the length of the
window be L, and the motion clips already aligned with the gestures are rep-
resented by M1,M2, · · ·Mm, the source original motion clips are represented by
M

′

1,M
′

2, · · ·M
′

n. The distance

D(k, j, f, L) =
L∑

i=0

α(Mk−i −M
′

j−i) + β(Mk+i+1 −M
′

j+f+i+1) (5)

where f is the number of frames in the gap, i is the index over the frames being
compared, k is the start frame in the selected motion and j is the start frame in
the source motion. α and β are adjusted to give greater weight to frames close
to the gap and less weight further away. The sliding window ranges from 10
to 30 frames. This comparison combines the velocity comparison and distance
comparison, which makes the selected motion the most similar to the motion on
either end.

When motion clips are selected, we have to register the selected motion to
the gaps, aligning them with the motion at either end. This is done by adding a
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linear offset to the fill clip which generates a good result. This can be represented
formally as F (x) = G(x) + O(x), where O(x) is the linear offset, G(x) is the
selected motion clips, F (x) is the final fitted motion for a frame index x. G(x) and
O(x) have the same starting and ending index. Since G(x) and O(x) are both
continuous functions, thus the final motion F (x) is also continuous. However,
sometimes the added offset will make the motion unrealistic by producing overly
large movements. The sequence F (x) can be multiplied by a scale factor to
reduce the final motion to a more realistic range.

Interpolation and Hold Gap Filling Another strategy explored is using
interpolation to fill the gaps. The motivation for this strategy is to use the most
complex movement for the stroke and relatively simple motion in between, the
hope being that this would add greater emphasis to the stroke motion, where the
communicative meaning is concentrated. The interpolation fill is combined with
inserting short hold phases. These serve two purposes. First, they reflect the
periods of stillness observed in our data. Second, they provide a way of ensuring
the velocity of the movement is not unrealistically slow. If the gap requires a
long duration interpolation with a relatively small change in posture, this would
cause unrealistically slow movement. A hold phase is used to occupy some of the
gap time, so the actual transition proceeds at a reasonable velocity.

This fill scheme is implemented as follows. To avoid a sudden stop in the
motion, we extend the end point of the phrase clip into the gap by an amount
t = s1∗GapDuration where s1 is a scale factor set to 0.25. The new end position
is calculated by multiplying the scaled velocity at the end of the clip (V = 0.08∗v)
by this time where v is the velocity at the end of last phrase. This allows the
motion to fade out. A hold is then started at HoldStart = p+V ∗t where p is the
position at the end of last Phrase and the hold duration is t′ = s2∗GapDuration
where s2 is a scale factor set to 0.25. The interpolation between the motion clips
and hold is done using an ease-in, ease-out curve to connect the ends of the hold
to the previous and next phrases.

5.4 Procedural Animation

Procedural animation is used to add body rotation to the motion. This is done by
specifying an axial rotation along the spine. The desired body rotation direction
is determined based on the same prediction used for the pelvis rotation. To
determine the starting time for the rotation, we calculate the time difference
between the phrase start time and the start time of body rotation for all samples
in our source data. This offset can be modeled using a Gaussian distribution that
has average AV E and standard deviation SD. During reconstruction, we sample
from this distribution to determine the time difference between the starting point
of phrase and the start of the rotation. The end time and the end value for body
rotation is set up using default values which is similar to the approach in [1].
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5.5 Motion Reconstruction

The approach described here is general enough to be adapted to various anima-
tion systems. Our specific animation system reconstructs the motion as follows,
given as input a script that specifies the desired gestures and associated timings.
First, the system solves for the arm posture associated with the start and end of
each stroke. Interpolation functions are used to move between poses. Additional
data such as hand-shape is also specified at this time, following the algorithm
described by [1]. A similar approach is used for the procedural body rotation.
Start and end poses for the effected spine degrees of freedom are specified and
interpolation functions are associated with them to affect the transition. The
algorithms described above generate a continuous sequence of motion capture
data for controlling the lower body. Instead of representing this as joint angle
data, our system stores this as a set of parameters that can be used to recon-
struct the pose at each time step. Parameters include the COM position, foot
positions, knee angles and pelvis angles. At each time step, a dedicated lower
body solver uses this data to pose the lower body as the upper body is controlled
by interpolating between the keyed values. Footskate is corrected by specifying
periods during which each foot cannot move and then simply keeping the foot
data constant during these times.

6 Evaluation

The algorithm provides visually pleasing motion that greatly adds to the overall
liveliness of the animation. The accompanying video provides examples of the
algorithm, including the motion capture fill and interpolation fill variants.

We conducted a user study to test the effects of our system. First, we wanted
to make sure that adding body movements is an improvement at all. Second, we
wanted to empirically find out which of the two variants of our model produces
more natural motion. For our study we recruited 21 subjects (14 male, 7 female)
from the US (11) and Germany (10), aged 23–46.

Material We used a single clip from previous work of length 33 sec. to test
different conditions [2]. Our conditions were: (N) no body motion, (F) body
motion generated with the motion capture fill-in variant of our system, and (I)
body motion with the interpolation variant. To gather sufficient power for the
study we produced 4 different variations of each of conditions F and I using
different random seeds in our probabilistic algorithm. We then cut the clips
into 3 parts each. This resulted in 3 clips for N and 4x3=12 clips for F and I
each. We intentionally left the audio track (speech) in the material because we
considered the multimodal synchronization between speech, gesture and pose to
be an important aspect for judging the naturalness of the motion.



12

Method Each subject participated in two studies (A and B). In study A we
presented single clips in random order. We used 12 clips for F, I and N each4

So the user was exposed to 3x12 = 36 clips in total, clips could not be replayed.
The user rated the “naturalness” of the motion on a 5-point scale where every
option was numbered (-2 to +2) and the extremes labeled with not at all and
very much. In study B, we presented all 12 clips of conditions F and I side by
side, in random left-right order. The user was asked to decide which variant s/he
found more “natural” in terms of movement. Below the two videos, which could
be replayed multiple times, we displayed a fully labeled 5-point scale: -2 (left
one), -1 (rather left one), 0 (both equal), +1 (rather right one), +2 (right one).

Results In study A, the subjects rated the three conditions on average: -0.63
(sd=.68) for no motion (N), +1.1 (sd=.38) for motion capture fill (M), and
+0.65 (sd=.41)for interpolated fill (I). We found that conditions F and I were
rated more natural than N (no motion) with high significance. For this, we used
t-tests for N vs. F (t(40)=-10.19; p < .001) and N vs. I (t(40)=-7.36; p < .001).
Moreover, condition F was clearly rated more natural than I (t(40)=3.75; p <
.001). The latter was confirmed by study B where we mapped ratings such that F
corresponded to -2 and I to +2. The mean of -0.73 indicated that users preferred
F which was validated to be a significant deviation from zero in a one-sample
t-test (t(20)=-5.78; p < .001).

Discussion The highly significant preference of our proposed models to no mo-
tion (N) first ensures that our methods improve an animation instead of adding
irritation. This finding underlines the importance of adding lower body motion
at all in order to make an agent believable. The highly significant preference of
I over F demonstrates how systematic studies can guide the algorithm design
process and suggests the use of motion capture fill is a preferable option.

7 Conclusion

This paper presents an effective algorithm for adding full body postural move-
ment to animation sequences of arm gestures. The system uses motion capture
data and procedural animation to add lower body movement and spine rotation
respectively. A combination of a Markov model and association rules are used
to predict appropriate postural movement for specified gestures. The resulting
motion has a much more lively, realistic feel while still maintaining the flexibility
of a procedural gesture system capable of creating 38 different types of gestures
in hundreds of variations.

A user study confirms the effectiveness of the algorithm. Two variants of
the algorithm, using gap filling based on motion capture and gap filling based
on interpolation, were both considered significantly preferable to not having a
postural model. Interestingly, the motion capture gap filling was also considered
4 To obtain 12 clips for condition N, we had to repeat each of the 3 clips 4 times.
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significantly preferable to the interpolation based method. This suggests that
continuous movement may be an important factor in subjects’ judgement of
animated motion.
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