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Abstract. This paper presents a neural network approach to the
problem of �nding the dialogue act for a given utterance. So far only
symbolic, decision tree and statistical approaches were utilized to
deal with a corpus as large as the VERBMOBIL corpus. We propose
solutions to the questions of representing speech, network architec-
ture and training in this context. We argue that, when using neural
networks, a task like this can only be solved in a modular approach
where training data is split and processed by different components of
a larger network. Special care must be taken in constructing a feed-
ing mechanism that avoids oscillatory behaviour due to the heteroge-
neous data.

We were successful in constructing a modular neural network that
yielded interesting time-sensitive properties as well as recognition
rates superior to most other methods. A �rst attempt at devising a
hybrid system got very close to the best results of this �eld which
suggests further enhancement in future architectures.

1 Introduction

Dialogue acts are a widely used means of representing the inten-
tion of a speaker in interactive systems (cf. [2]). Being derived from
speech act theory [14] which interpreted utterances as actions, as-
signing each dialogue contribution an illocutionary force, computer
scientists soon realized the potential of this idea, exploiting these acts
as plan operators to model the intentional structure of a dialogue. Ex-
amples for dialogue acts are SUGGEST, ACCEPT or THANK (table 3
lists all acts used in this work). Obvious applications are counselling,
tutoring and translation systems. VERBMOBIL [15] is one of the lat-
ter and relies in various respects on dialogue acts [7][1]. The most
important one is that of the translation objective [12] de�ning the
central aspect of an utterance that has to be carried over to the tar-
get language (the propositional content should be added to make the
information complete, e.g. for a suggestion it is not enough to know
that it is a SUGGEST dialogue act but also what the suggestion was
about).

Since dialogue acts model different dimensions of communication
at once, overlaps occur (e.g. countersuggestions could be viewed as
being a REJECT and a SUGGEST at the same time). Therefore, in
VERBMOBIL each utterance is labelled with multiple dialogue acts.
In this work, however, multiple acts are, for reasons of simplicity and
comparability, ignored, i.e. for every utterance there is one annotated
dialogue act (for recent research on the issue of dialogue acts cf. [3]).

So how do we �nd out the dialogue act for a given utterance?
Several suggestions arose, mainly using symbolic means like hand-
coded rules [12] or statistical means [10][9][13]. The latter has been
the most successful method so far although it has not been able to im-
prove much beyond results that could be easily obtained with simple
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bigrams [10]. This seems to be due to problems with the training cor-
pus size which usually does not have enough samples to provide even
3-gram models with suf�cient data, let alone higher n-gram models.

Hence, the idea to employ neural networks that might prove more
suitable, or at a later stage, might contribute in a hybrid system to
solve the task better. We focus our attention on recurrent networks
like Elman and Jordan nets that have time-sensitive properties [4][8].
These networks introduce a strongly restricted form of recurrency
that still allows controlled processing and the utilization of the stan-
dard backpropagation algorithm. Figure 1 shows an Elman net which
is basically a simple Feedforward net with one hidden layer and a
special so-called context layer where the values of the hidden neu-
rons are shifted to after each step of processing.

recurrent connections

Input layer

Context layer

Hidden
layer

Output layer

Figure 1. architecture of a simple Elman network with one hidden layer
and one context layer

The many promising properties of neural networks like robust-
ness, parallel and incremental processing, easy adaptability to new
domains by re-training (since there are no hand-coded rules) led to
this work. We tackle the problem by providing working solutions to
a sequence of three subproblems:

1. Finding a suitable representation for the input data (transcribed
spontaneous natural language utterances)

2. Devising an overall architecture of a modular network
3. Preparing the training data according to the needs of the task and

feeding the network in a suitable way

In the further course of the paper we will present our solutions,
evaluate them with respect to related work and elaborate on possible
future improvements of this project.

2 Representation

An arti�cial neural network processes information by modifying the
numerical values of its neurons that usually lie in an interval of ��� ��.
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It retrieves its input from a series of designated input neurons. The
number of these neurons is constant. So how do we feed a network
accepting input of constant length with utterances of variable (and
possibly very large) size? Different solutions exist:

� Entering an utterance as a whole, leading to large networks which
could still be too small for certain utterances

� Using a sliding window mechanism where a part of the utterance
of �xed length (e.g. three words) is fed to the network moving
from the �rst part to the last

� Exploiting the time-sensitive properties of recurrent networks like
the Elman or Jordan networks [4][8] which use a context layer of
neurons as a kind of memory. Utterances can be processed word
by word or in bigger units.

The �rst possibility was ruled out due to restrictions in size which
are necessary to limit training time. Instead a combination of the two
last techniques led to optimal results, i.e. taking a partially recurrent
neural net and feeding it with the contents of a sliding window (a
sliding window of size one becomes the third alternative). Thereby,
context information enters the network at two stages. First, through
the syntactic properties of the input vector and second, through the
buffer memory of the partially recurrent network.

This leaves us with the problem of representing a single word as a
vector. The optimal solution for neural processing would be the so-
called 1-of-C representation where each possible item (here: word)
gets its own input neuron. With a lexicon of about 3800 word tokens
it proved impossible to train the resulting networks within sensible
time limits. Therefore, some form of compression was necessary. On
top of this we aimed at including information about the syntactic
category, namely the part-of-speech (POS) of a word, since

1. in some cases the usage of parts-of-speech could reveal a more
general template-like structure of dialogue act utterances:

How about �ADJECTIVE��NOUN� ? (suggest)

That �VERB� okay. (accept)

2. in case of unknown words having part-of-speech information could
help the system work with minimal derogation

The �nal design comprised a vector with one segment for each
part-of-speech category (we devised 15 such categories). A�NOUN�

would be represented exclusively within the special NOUN segment
of this vector. Each POS segment could therefore use its own repre-
sentation for all the words belonging to this POS. We chose each rep-
resentation according to the importance of differentiating within the
respective POS category. The category �PRON� (containing words
like where, what, how, ...) for example is certainly more
worthwhile to look at closely than the category �CARD� (contain-
ing cardinal numbers).

Words within a POS of high importance (relative to the task) are
thus represented by assigning to each possible word one distinct com-
ponent (1-of-C representation). Within a POS of a medium impor-
tance words were represented by the binary of their position in the
word list of their category. Finally, the words of low importance (i.e.
where only the category itself is interesting) were grouped to a single
component of the vector, i.e. in case of a cardinal number the system
would only get to know that there was a cardinal number but not
which one. Figure 2 shows a sample input vector of the word token
“well” (adverbs were represented as binaries).

The resulting representation made use of 15 POS categories and
yielded an input vector with 216 components.

ADJ ADV VERB ? PUNC

0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 00 0

input token: "well"

Figure 2. input vector representation of the adverb “well”

3 Architecture

Design and training of the networks was done with the Stuttgart Neu-
ral Network Simulator (SNNS) which allows to construct and com-
plile different kinds of neural networks [18].

For the overall architecture we decided on a modular approach
after some discouraging experiments with a monolithic network. A
natural way of splitting the task of dialogue act annotation was to
consider the partial task of detecting one special dialogue act in an
utterance. Accordingly, we trained specialized networks for each dia-
logue act, giving each net one YES and one NO neuron as output units.
The resulting YES/NO outputs are not probabilities nor are they in
any way comparable amongst each other. Still one could simply pick
the net with the highest (YES � NO) value and declare the associated
dialogue act the best guess for the current utterance. A better solu-
tion is to modify each network output with weights optimized on the
training corpus. As a neural network does exactly that, i.e. weighting
and recombining values, we constructed another neural net taking
the output of the modular nets for a whole utterance�and learning to
modify the outputs in such a way as to correct the missing compa-
rability amongst the modular nets. This selector network improved
recognition rates by about 10%. The general architecture is shown in
�gure 3.

The selector network did not have to have time-sensitive proper-
ties but using an Elman/Jordan network yielded the best results. This
indicates that the more global context of preceding dialogue acts was
exploited to improve recognition rates. The importance of taking the
information of preceding dialogue acts into account has been shown
in [10].

4 Training

Training was done on the VERBMOBIL corpus which consisted of
467 German dialogues in the domain of appointment scheduling.
These dialogues had been recorded at different German universities
and institutes, manually transcribed and manually annotated with di-
alogue acts according to the guidelines in [7].

For the training of the 18 modular networks we had to determine
(a) how to organize the set of data (e.g. into smaller packages), (b)
how to tune learning parameters, and (c) when to stop training.

4.1 Training in Packages

The data for the modular network representing dialogue act d con-
sisted of all utterances in the training corpus with dialogue act d. We

� the output of a single modular network d for an utterance u �
�w�� � � � � wn� with output functions yes

d
and nod is computed by the for-

mula �

n

P
n

k��
�yesd � nod�.
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Figure 3. overall architecture showing the modular networks - one for
each dialogue act - plus the selector network

called these utterances the positive patterns, as opposed to the nega-
tive patterns which was all the rest of the training data.

The capacity of a neural network is limited by the size of its hid-
den layer which is in turn limited by computational resources and
architectural considerations. Feeding all available data to such a lim-
ited network where the hidden layer contained 30–90 neurons re-
sulted in poor performance. We therefore divided the training cor-
pus in packages where training ran for a certain time whereafter we
would present the next package. Each package contained all positive
utterances plus an equal number of negative utterances, all encoded
in aforementioned representation. These packages were ordered ac-
cording to a simple complexity measure following Elman's advise to
train simple patterns �rst [5]. On top of this we included a training
supervision mechanism that would measure progress of the training
and switch packages in case of bad progress or stretch the training
length in case of good progress where progress was measured with
the middle squared error (MSE). Figure 5 shows the training error
development with this kind of training whereas �gure 4 depicts the
original curve of the conventional feeding of all patterns subsequen-
tially for a number of epochs.

4.2 Tuning Parameters

The training parameters for the modi�ed backpropagation learning
algorithm were tuned according to standard literature [6][18]. Back-
propagation works as a series of weight modi�cations leading an er-
ror function E to a minimum. The learning parameter � determines
the quantity of each modi�cation and is picked from an interval of
��� ��.

For the modular networks we chose a small learning rate of � �
���� because of the high amount of relatively heterogeneous data that
we did not want to make the net converge too quickly to a local min-
imum. For the selector network � � ��	 proved suitable. Since we
made use of the backpropagation with momentum version to make
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Figure 4. training curve measuring MSE over number of epochs
(subsequent pattern feeding)
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Figure 5. training curve measuring MSE over number of epochs (adaptive
feeding in packages)

convergation faster (cf. [6] for details) we had to tune the momentum
term �, setting it to 0.5. In all changing these parameters a little did
not show any signi�cant effect on the performance of the nets.

4.3 When to Stop

The last and one of the most decisive problems is that of training
duration since a neural network quickly overadapts to training data
compromising its performance on unseen data to an unacceptable
degree (also called over�tting). The usual step taken is to split the
training set into a training corpus and a validation corpus. The latter
is used to test the network's performance on data not occurring in
the training patterns which should give the system an idea of the
networks ability to generalize. Figures 4 and 5 show the results on
the validation corpus with a dashed line. Since the MSE does not give
much information about the quality of the annotation process which
happens on a higher level we had to de�ne another measure to select
the optimal training duration. This measure combined recall and
precision of the annotations of a single net (YES/NO annotations)
to determine the best modular net in each of the 18 training runs. The
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exact formula was

quality(d,k) � � � recall(d,k) 
 ��� �� � precision(d,k)

where d denotes the network and k the number of training epochs. In
most of our experiments � � ��� worked best.

5 Results on Context

Examining the behaviour of the best network on test sentences brought
about interesting results concerning the network's ability to react to
context. Although in our �nal architecture the net only retrieves one
word at a time, it is able to distinguish equal words relative to context
like in�:

Text JA DAS WÄRE GANZ GUT ACCEPT

yes, that would be great

Netoutput ACCEPT 0.59699

Text WIR MÜSSEN JA MAL
WIEDER DEN TERMIN FÜR
(...) FESTSETZEN

INIT

well, we do have to �x the date for
(. . . ) once more

Netoutput ACCEPT -0.10364

Text SCHÖNEN DANK AUCH THANK

thank you then

Netoutput ACCEPT -0.21865
THANK 0.19883

Text JA DER NEUNZEHNTE
PAßT MIR AUCH SEHR
GUT

ACCEPT

yes, the nineteenth suits me well,
too

Netoutput ACCEPT 0.36413

THANK -0.96152

Other examples show that the networks even made use of infor-
mation outside the current utterance's borders, i.e. of the previous
utterance, like in the utterance

JA GUT

which has a similar meaning and ambiguity as the English okay that
can be used to signal agreement (ACCEPT) or to con�rm one's inter-
est in the conversation (FEEDBACK). It was correctly classi�ed by the
network. These are only some examples. A more systematic analysis
of the network's properties is one of our future aims.

The �nal overall evaluation was conducted on a previously unseen
set of data, disjoint with training and validation sets.

6 Evaluation

Our experiments ran on the VERBMOBIL corpus of 467 German ap-
pointment scheduling dialogues. It was partitioned into training, val-
idation and test sets as shown in table 1.

� the following table shows processed utterances of the test corpus in the mid-
dle section (translation in italics). The currently processed word is under-
lined (a more or less equal word in the translation is underlined for better
understanding though the point is lost in all cases by the translation), the
activation of the most interesting modular net(s) is given underneath in the
form (YES - NO). The correct dialogue act is right of the utterance.

unit training validation test total
dialogues 350 87 30 467
utterances 10766 2903 852 14521

Table 1. partitioning of the dialogue corpus

First experiments with monolithic networks yielded a recall of
45.11% in the best con�guration (Feedforward net with 250 hidden
units and a sliding window size of 2) which led us to the conclusion
that only a modular approach could cope with this kind of data.

The best modular network annotated the test data with a recall of
60.45% after a couple of enhancements in training and adding a se-
lector network as described above. The most important results are
summerized in table 2 showing the impact of the respective modi-
�cations. A more detailed view on the results is offered in table 3
where precision and recall for each single dialogue act are given.�

without selector with selector
conventional feeding 48.29% 57.84%
package feeding 57.84% 60.45%

Table 2. results of modular networks

dialogue act name recall prec. occ. ann. corr.
THANK 100.0 90.0 9 10 9
GREET 93.55 93.55 31 31 29
INTRODUCE 92.86 100.0 14 13 13
SUGGEST 86.28 60.19 226 324 195
BYE 85.42 89.13 48 46 41
INIT 67.44 65.91 43 44 29
REQUEST COMMENT 66.67 77.78 21 18 14
REQUEST SUGGEST 61.54 61.54 26 26 16
ACCEPT 53.7 46.77 108 124 58
FEEDBACK 52.94 52.94 51 51 27
REJECT 52.86 50.0 70 74 37
GIVE REASON 50.0 55.81 48 43 24
DIGRESS 38.46 50.0 13 10 5
DELIBERATE 33.33 56.52 39 23 13
CONFIRM 14.29 25.0 7 4 1
GARBAGE 5.0 33.33 20 3 1
CLARIFY 3.94 37.5 76 8 3
MOTIVATE 0.0 -.- 2 0 0

Table 3. results of best con�guration

The result of the network compares pretty well in the �eld of au-
tomated dialogue act annotation where different solutions have been
offered in the past. Symbolically operating approaches like the sys-
tem FLEX [12] yielded high results but always tested their hand-
coded rules on the data the rules were extracted from, a methodology

� the three rightmost columns give �gures for the number of occurances (occ),
the number of times a dialogue act was annotated (ann) and the number of
times a dialogue act was correctly annotated (corr).
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that disquali�es the results from comparison. Another project uti-
lized decision or classi�cation trees [9] obtaining a top recall value
of 46%, therefore proving inferior to our approach. Recently, there
have been attempts to devise symbolic rules using a Monte Carlo al-
gorithm. This so-called transformation-based learning has reached
very good results close to statistical ones (cf. [11]).

On the other hand, statistical n-gram methods are still unbeaten
[10][9][16]. The work of [10] reached a recall of 67.53% on ex-
actly the same data as this project which seems a long way ahead.
One has to consider, though, that simple bigrams already give a re-
call of 65.73%, leaving an improvement of the much more elaborate
systems by about 2%. Therefore, it appears as though statistical ap-
proaches have already found their limits whereas neural networks
yield a huge number of possibilities still to be explored. In a hybrid
version of this work – more closely described in the next section –
we were able to obtain a recall of 66.31% on unseen data which is
almost as good as the best result in this �eld.

7 Hybrid Steps

One �rst approach towards combining statistics and neural networks
was done by replacing the original speech representation by a vector
that basically consists of statistical information. This representation
was developed in [17], another neural network project that used a
monolithic design on a small corpus. Each word w is represented by
a vector of length 18, one component for each dialogue act. Compo-
nent d retrieves the estimated probability P �djw�, i.e. the probability
that word w indicates a dialogue act annotation of d. A word's rep-
resentation is therefore its probability distribution over all dialogue
acts.

Replacing our representation by this statistical distribution (in-
put being restricted to one word per go), otherwise using exactly
the same architecture and parameters, we achieved a recall value of
66.31% on the test set.

Future directions would �rst of all look into the potential of widen-
ing the input window to two words where we would use the proba-
bilities of P �djw�� w��.

8 Conclusion and Future Work

In this paper we have outlined the design and capabilities of a mod-
ular neural network that automatically annotates utterances with di-
alogue acts. Different design decisions were presented and justi�ed.
Representation of speech was done by multiple section vectors in-
cluding parts-of-speech information. A modular architecture was pro-
posed to cope with the large amount of data. The architecture was
based on the dialogue acts themselves, assigning one neural net to
each act and combining/interpreting the single results by a selector
network. Training was managed in packages and the package training
duration was made dependent on the network error rate. The result-
ing network was analyzed and compared with related work in the
�eld, proving its superiority over all other approaches but the statis-
tical one, although �rst experiments with a hybrid system resulted in
recall values only 1% worse than those of the n-gram method.

Future research will involve the close examination of the weak-
nesses and strengths of the statistical and the neural network ap-
proach. Then one could cluster dialogue acts to groups and let one
method recognize the group and the other deal with specifying the
member of the group. Ideally, the clustering should be based on au-
tomatically detected correlations.

The design of the neural network itself is certainly open for future
improvement. One major drawback of neural networks is the training
time which is strongly linked with representation issues (since the
representation determines the size of the network). Furthermore, an
analysis of the interior representation of words could give important
clues as to how to improve the original representation.
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