
Authoring Scenes for Adaptive, Interactive Performances

Patrick Gebhard Michael Kipp Martin Klesen Thomas Rist
DFKI GmbH

Stuhlsatzenhausweg 3
66123 Saarbrücken Germany

+49 681 302 5152

{gebhard, kipp, klesen, rist}@dfki.de

ABSTRACT
In this paper, we introduce a toolkit called SceneMaker for
authoring scenes for adaptive, interactive performances. These
performances are based on automatically generated and pre-
scripted scenes which can be authored with the SceneMaker in a
two-step approach: In step one, the scene flow is defined using
cascaded finite state machines. In a second step, the content of
each scene must be provided. This can be done either manually by
using a simple scripting language, or by integrating scenes which
are automatically generated at runtime based on a domain and
dialogue model. Both scene types can be interweaved in our plan-
based, distributed platform. The system provides a context
memory with access functions that can be used by the author to
make scenes user-adaptive. Using CrossTalk as the target
application, we describe our models and languages, and illustrate
the authoring process. CrossTalk is an interactive installation with
animated presentation agents which “live” beyond the actual
presentation and systematically step out of character within the
presentation, both to enhance the illusion of life. The context
memory enables the system to adapt to user feedback and
generates data for later evaluation of user/system behavior. The
SceneMaker toolkit should enable the non-expert to compose
adaptive, interactive performances in a rapid prototyping
approach.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Performing arts (virtual actors);
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – animations, evaluation/methodology.

General Terms
Design, Experimentation.

Keywords
Authoring, user adaptivity, believability, embodied agents, virtual
theater.

1. INTRODUCTION
Over the last couple of years, animated conversational characters
have been used in a wide range of different application areas,
including virtual training environments [22], interactive fiction
[11][14] and storytelling systems [20], as well as in e-commerce
applications where computer agents play the role of product
presenters and sales assistants. Our work at DFKI builds on prior
work on embodied conversational agents [7] and presentation
agents [4]. One of the conversational characters developed at
DFKI is Cyberella, a virtual receptionist which provides visitors
with information about staff members and projects [8]. Cyberella
assumes a setting in which the agent addresses the user directly
like in human face-to-face conversations. However, there are
situations in which direct agent-user communication is not
necessarily the most effective and most convenient way to present
information. Inspired by the evolution of TV commercials over
the past 40 years, our group has discovered role-plays with
synthetic characters as a promising format for presenting
information. We have therefore proposed a shift from single
character settings towards interactive performances by a team of
characters as a new form of presentation [2]. The use of multiple
characters allows to convey social aspects such as interpersonal
relationships between emotional characters [16][19]. It also
allows us to emulate small talk between characters which then
becomes yet another performance or “meta-theater” [6]. The
purpose for this “off-duty” activity, quite natural for humans, is
twofold: (1) It attracts and binds the attention of passers-by, and
(2) gives our agents the authenticity of real human actors,
conveying the impression that they are permanently alive.

Using the theater as a metaphor we equated our agents with
human actors. But where does the script come from which defines
their verbal and nonverbal behavior? There are basically two
approaches: The system can play the role of a playwright that
automatically generates scenes at runtime [3] or we can use pre-
scripted scenes that have been authored by a human writer.
Ideally, an authoring system supports both scene types and
provides creative experts (primarily non-programmers) with tools
for the creation of rich, compelling content, and with an easy way
to describe the scene flow, i.e. the transitions between scenes. The
scene flow tells the system which scene should be played next
during an interactive performance. The goal is to seamlessly
integrate each scene into the overall script in order to obtain a
believable result. This task is further complicated by the fact that
in an interactive performance, the animated characters must be
able to respond to the user in a way that is both appropriate and
non-repetitive.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’03, July 14-18, 20003, Melbourne, Australia.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

One of the first authoring systems for interactive applications was
Improv [15] which consists of two subsystems. The first is an
animation engine that uses procedural techniques to enable
authors to create continuous motions and smooth transitions
between them. The second subsystem is a behavior engine that
allows authors to create sophisticated rules governing how actors
communicate, change, and make decisions. The system uses an
“English-style” scripting language to define individual scripts. A
script is a sequence of commands that trigger specific actions or
other scripts. In addition, Improv allows authors to create decision
rules which determine the actor’s tendencies toward certain
choices over others. The overall behavior of an actor is
determined by the script that is currently executed and by the non-
deterministic behavior defined by the decision rules. As the
number of scripts and rules increases it can therefore become
more and more difficult to predict the runtime behavior of each
character. Improv is a powerful authoring system but it does not
provide support to deal with this complexity. Our system uses a
similar scripting language to define individual scenes but we also
provide an intuitive way to describe the scene flow. We believe
that this makes it easier to produce a behavior which is consistent
with the author’s vision and intention. For character animation we
currently use Microsoft Agent [13] with a fixed set of animations
that cannot be modified at runtime.

Microsoft Agents are also used in SCREAM, a scripting tool
which comprises modules for emotion generation, regulation, and
expression [17]. In contrast to our system which uses an author-
centric approach with the primary focus of scripting at the
story/plot level, they use a character-centric approach in which
the author defines an agent’s initial goals, beliefs, and attitudes.
These mental states determine the agent’s behavioral responses to
the annotated communicative acts he receives. SCREAM is
intended as a plug-in to task specific agent systems such as
interactive tutoring or entertainment systems for which it can
decide on the kind of emotion expression and its intensity. The
SCREAM system uses MPML, a Multimodal Presentation
Markup Language which provides a visual authoring tool [21]. It
was designed mainly for augmenting web pages with animated
presentation agents similar to DFKI’s WebPersona [4] and not for
authoring interactive performances. As such, it does not have a
context memory and only rudimentary support to define the scene
flow, e.g. by using hyperlinks to jump to other parts in the script.

Neither Improv nor SCREAM allows interweaving of generated
and pre-scripted scenes and despite their claim to provide an
intuitive or English-style scripting language, both require a great
deal of specialized programming expertise. We therefore propose
a two-step approach: In step one, the scene flow is defined using
cascaded finite state machines. In a second step, the content of
each scene must be provided. This can be done either manually by
using a simple scripting language, or by integrating scenes which
are automatically generated at runtime based on a domain and
dialogue model. Both scene types can be interweaved in our plan-
based, distributed platform.

The rest of the paper is organized as follows. Section 2 describes
the CrossTalk system which serves as our target application and
major testbed for adaptive, interactive performances. Section 3
introduces the concept of cascaded finite state machines to show
their use in authoring the scene flow and user interactions.

Section 4 explains how to make an interactive performance user-
adaptive and Section 5 concludes with a short description of our
ongoing and future research.

2. THE CROSSTALK SYSTEM
CrossTalk is an interactive installation with animated presentation
agents working with plan-based dialogue generation and a corpus
of pre-scripted scenes (well over 220 scenes in German and
English each). CrossTalk was first presented to the general public
at the CeBIT convention 2002. The idea was to develop a new
variant of information presentation in public spaces. As such,
CrossTalk provides a spatially extended interaction experience by
offering two separated agent screens, and by creating the illusion
that the agents have cross-screen conversations. Hence the name
“CrossTalk” [6][18].

Figure 1 shows the main components and the spatial layout of the
CrossTalk installation. A visitor enters the CrossTalk installation
by stepping in front of the user console (touch screen). The visitor
is then welcomed by Cyberella (left screen) whose primary task is
to play the role of a fair hostess and stage director for the two
virtual actors Tina and Ritchie (right screen). Their role in
CrossTalk is that of sales dialogue performers. In our scenario
they play a salesperson and a customer that discuss the pros and
cons of a car along a set of value dimensions (issues). The course
and style of the conversation is influenced by a set of sales
dialogue parameters which can be defined by the user prior to the
performance:

� Roles – who is the salesperson and who is the customer?

� Personalities – polite vs. impolite, agreeable vs.
disagreeable

� Issues – safety, comfort, prestige, operational costs, etc.

Cyberella first introduces the concept of simulated sales dialogues
as a kind of personalized e-commercial, and then guides the user
through a sequence of menus to specify the sales dialogue
parameters for the next performance. She then uses these
parameter settings to instruct Tina and Ritchie in her role as stage
director (across screens) and starts the performance.

Figure 1: Main components and spatial layout of the
CrossTalk installation.

Now the visitor’s attention is drawn to the “stage” (right screen)
where the two actors Tina and Ritchie change their body postures
to signal that they are now “on-duty”. In the current scenario, a
single car is discussed along the set of value dimensions (issues)
specified by the user. Depending on their personality, the agents
use different degrees of criticism (customer) and enthusiasm
(salesperson) when talking about the car’s features (consumption,
horsepower, airbags, etc.). Clearly noticeable variations in the
sales dialogues can be achieved because the personality settings
determine both the dialogue strategies and the text templates used
in the conversation.

During a performance the user can give feedback by pushing one
of three buttons (“applause”, “boo” and “help”). Such feedback
may cause unexpected (meta-theatrical) behavior. For instance, if
a visitor submits a “boo”, the actors may get nervous and forget
their lines. In contrast, “applause” makes them proudly
smiling/bowing to the user. When “help” is requested, Cyberella
stops the performance for short explanations.

After the performance, Cyberella takes over again, asking
whether the user wants to see another sales dialogue, possibly
with new settings. If not, the visitor leaves the installation and the
actors go to “off-duty” mode adopting a more relaxed body
posture. But instead of switching off or just idling around the
agents display their off-duty behavior by chatting with each other
across screens or by “rehearsing” for the next performance. The
visitor is so encouraged to stay for awhile watching the “private
lives” of the agents and, more important, new potential visitors
are allured from the crowds of passers-by.

Since it’s first presentation, CrossTalk has served its original
purpose of attracting visitors at a number of occasions (CeBIT
2002, COSIGN 2002, IST Conference 2002, etc.). It is now our
major testbed for adaptive, interactive performances.

3. AUTHORING INTERACTIVE SCENES
Authoring in CrossTalk is based on the concept of scenes. From
the point of view of the system, scenes are pieces of user-edited
contiguous dialogue (single utterances can also be scenes, not
being a dialogue in the strict sense). From the point of view of the
author, a scene is usually a coherent and closed unit regarding
either a message, agent characterization or a humorous punchline.

Having assembled a huge corpus of pre-scripted scenes (more
than 220 for English and German each) we realized that apart
from the scripting [18] it is much more of a challenge to create,
maintain and extend the structure of the story. Technically
speaking, every story contains a logical scene flow that defines
the transitions between scenes. This has to be modeled by the
author and interpreted by the system at run-time. Usually, the
scene flow is hard-wired and not reusable for other performances.
Also, since stories are created by authors, possibly non-
programmers, they depend on others to implement the story’s
logical framework.

In order to facilitate the story’s implementation, we suggest a
two-step approach for authoring interactive scenes. At first, the
scene flow has to be defined using cascaded finite state machines.
They refer to scenes whose content has to be provided in a second
step. This content can be either pre-scripted scenes or scenes
which are generated at runtime. A pre-scripted scene consists of
pieces of dialogue – comparable to a screenplay – which include

special tags to control the agent’s non-verbal behavior, such as
gaze, gesture, and body posture, as well as system control
commands (see Figure 2). Scenes which are automatically
generated at runtime, rely on a domain and dialogue model and
may depend on user-defined parameters for the generation
process. In a communication-theoretic view we consider the
generation of simulated dialogues a plan-based activity [3]. First,
we identify the basic dialogue moves in our domain (request,
inform, etc.). Then, we define dialogue strategies to characterize
typical combinations of dialogue moves. The strategies are
encoded as plan operators that can be processed by the JAM agent
architecture [10]. For each dialogue move a multimodal utterance
is selected according to the context. The utterances contain text
and gestures and were written by a human author using the same
authoring syntax and gesture repertoire as for the pre-scripted
CrossTalk scenes.

Sometimes we have to reuse the same scene over and over again.
Cascaded finite state machines allow the shared use of modules
(part of a scene flow), similar to subroutines in a programming
language. This simplifies the modeling process in the case of, for
instance, repeated patterns of agent-user interactions like simple
yes/no questions. Also, such modules can be reused for other
applications.

Our approach provides authors with a flexible toolkit for scripting
scene flow, content and interaction. The SceneMaker toolkit
complements the DialogueCompiler which transforms pre-
scripted scenes to plan-based representations, as described in [6].
SceneMaker implements the techniques explained above for
modeling performances.

3.1 Scene Flow as Cascaded FSM
Having written the content the author can define the narrative
structure by linking the scenes in a graph called scene flow.
Technically, we use cascaded finite state machines (FSMs) [9] to
represent the scene flow. Cascaded FSMs are similar to Badler’s
parallel transition networks (PatNets) [5] used e.g. for the
autonomous control of gaze and hand movement in animated
agents. Compared to PatNets cascaded FSM do not allow the
parallel execution of multiple actions (scenes). However, they
allow simple scene flow management by providing hierarchical
structures for a basically sequential process. Adding parallel
structures would interfere with the simplicity of the authoring
process.

A cascaded FSM consists of nodes and edges (transitions). Scenes
can be attached to both nodes and edges. As mentioned above,
scenes can be either pre-scripted or automatically generated. Both

Figure 2: Pre-scripted scene.

nodes and edges can have system commands attached, like
accessing global variables or accessing context memory. This
extends the scripting possibilities as it enables the creation of
user-adaptive scenes (see Section 4).

A node represents a state in a performance. It can have a scene
attached that is invoked by the system at runtime. There are two
types of nodes (see Figure 3):

� Scenenode: Represents a state in which a pre-scripted scene
is performed.

� Supernode: Represents a state in which a pre-scripted or an
automatically generated scene is performed. Supernodes may
contain sub-nodes of type supernode or scenenode. One of
these sub-nodes must be declared the starting node. Edges
connected to a supernode will be inherited by all sub-nodes.

At runtime, a node is called running, if the attached scene is
currently performed, and terminated as soon as the attached scene
is finished.

In our scene flow definition, edges define the transition between
states. Like nodes they may have pre-scripted scenes attached
which will be invoked when the edge is traversed. There are three
types of edges (see Figure 4):

� Interrupt Edge: It is used for the handling of interruptive
events, like pressing the pause button on a CD player. These
edges have the task to directly interrupt a running node.
Currently, this edge type supports temporal constraints like
“20 seconds passed” or conditions like “user has pressed red
button”. If an edge points to its own source node, and if this
node is a supernode, the author can specify to start over (i.e.
restart interrupted scene) or jump to the last executed sub-
node (i.e. resume interrupted scene).

� Conditional Edge: Only when the node is terminated, all
conditional edges are checked in the order of author-

specified priorities. This edge type supports the same
constraints/conditions as the interrupt edge. If all conditions
fail, the probabilistic edges are checked.

� Probabilistic Edge: These will be checked when the node is
terminated and all conditional edges fail. In fact,
probabilistic edges are ε-transitions tagged with a probability
to support random branching in the scene flow.

Interrupt edges and conditional edges are mainly used for
scripting the user interaction, whereas probabilistic edges are used
as a design feature for making of the performance more variable.

A further enhancement for modeling the scene flow is a modular
approach where supernodes can be used as subroutines. If an
author wants to use this subroutine functionality (e.g. requesting
user feedback) s/he has to define a returning edge. A returning
edge is inherited by all sub-nodes of the supernode and can be of
any of the above described edge types. By means of these edge
types, you can determine how/when to jump back (e.g. user
feedback received or time-out). Figure 5 shows the sharing of
cascaded FSM supernodes as subroutines.

3.2 Scripting Scene Flow with Interaction
This section describes the scripting of the scene flow with user
interaction using CrossTalk as an example. The major challenge
is the modeling of asynchronous events as they occur in user
interactions. Handling the user input can be modelled using
various events and handling mechnisms:

• Request and wait: An agent asks the user a question and the
system waits until the user answers.

• Time-out events: Waiting for user input, the system regains
the initiative after a defined period of time.

• Interrupts: User feedback during the CarSales performance
causes the system to seamlessly integrate a generic scene.
Or, if the visitor leaves, the system interrupts all current
activities and switches from on-duty to off-duty.

• Concurrent event handling: User feedback during the
CarSales performance does not interrupt the performance but
influences the agents’ behaviour long-term by modifying the
context.

These events and handling mechanism are implemented using the
conditional and interrupt edge types. Request and wait is realized
with conditional edges, one for each answer. Time-out events are
produced using interrupt edges that act as observer demons and
access system time. Both interrupts and concurrent event handling
are realized in a similar manner. The latter but does not interrupt

Figure 4: Edge types.

Figure 5: Supernodes as subroutines.

Figure 3: Node types.

the current performance but modifies the context instead to
achieve long-term changes in character behaviour.

With the use of the cascaded FSMs we were able to script the
scene flow for the CrossTalk system. In the case of CrossTalk, we
first specified the two major states on-duty mode and off-duty
mode and the transition from one to the other. In a further step we
refined the two modes in defining new sub-states and transitions
between them.

Figure 6 shows a simple example in the CrossTalk scene flow:
The launched system will start in off-duty mode modeled as a
supernode with no scene attached (upper box). In a next step, the
sub-node idle0 that is declared starting node will be processed.
After performing its attached scene, node idle1 or node idle2 will
be processed with probability 0.5 each. If a visitor enters the
CrossTalk installation, the currently processed sub-node of
supernode off-duty will be interrupted using the interrupt edge
visitor_detected and the scene intro in supernode on-duty will be
performed. At the end of the scene, Cyberella asks whether the
user wants to provide parameters for the ensuing demo. To handle
this simple yes/no question (blocking event) we use a conditional
yes-edge c(yes) and a no-edge c(no). A third conditional edge
c(t>20), feedback-reminder is triggered if the user does not
answer within a certain amount of time (20 seconds). In this case
the scene feedback_reminder is performed. During the
presentation the user can give positive or negative feedback. This
is realized using an interrupt edge c(feedback), feedback_scene
which handles the feedback event. This event interrupts the
generated sales dialogue and invokes the associated
feedback_scene. Afterwards, the sales dialogue will be resumed.
If the visitor leaves the CrossTalk installation, the interrupt edge
visitor_gone immediately stops all ongoing activities in on-duty
mode and activates the off-duty supernode.

3.3 SceneMaker Output
The SceneMaker generates a set of plans that can be interpreted
by the JAM agent architecture [10]. The input consists of the
scene flow, pre-scripted scenes, and automatically generated
scenes, which must be in the JAM format. The scene flow is
represented with the XML-based scene flow modeling language.

Figure 7 shows an excerpt of the scene flow described in the
previous chapter. In the first step the pre-scripted scenes are
translated by the DialogueCompiler into a set of scene plans, one
for each scene [6]. In the following and final step, the
SceneMaker creates the scene flow plans. The scene flow plans
consist of scene plans, control plans and concurrent event
processing plans. These plans, executed on our distributed, plan-
based platform, run the show.

4. MAKING CROSSTALK ADAPTIVE
Our aim to “attract and bind” the user is based on the two
operational modes of the system: on-duty and off-duty. In off-
duty mode the user sees three actors supposedly engaged in small
talk and rehearsals, an unusual activity meant to “attract” a
potential user. Having succeeded thus, the system enters on-duty
mode and the user sees a performance as the result of the
observed rehearsals. Now a systematic stepping out of character
refers back to the agents’ “real life” as actors that had been
explicitly established by the off-duty mode. What we learned is
that references to other parts of a story/scenario make a
performance more complex and thus, more believable. Both

Figure 6: Simplified scene flow in the CrossTalk scenario.

Figure 7: Example scene flow specification.

should “bind” the user’s interest and keep him/her at the
installation as long as possible.
To support the “binding” of the user we now aim at another point
of reference besides the agents’ lives: the user him/herself. By
tailoring the performers’ reactions to the user’s previous behavior
we can convey the impression that our agents understand the user
while at the same time making the user feel like having an impact
on the presentation in a way that is subtle and long-term.
We go about this task by collecting information in a discourse
history and filtering relevant data using measures like frequency
and density. These measures are used to infer user stereotypes.
Measures and stereotypes can be seen as a rudimentary user
model. Both can be used by the author to make the selection of
pre-scripted scenes context-dependent and user-adaptive.
On several occasions (see end of Section 2) hundreds of people
have used the system, and interacted with it, often following
certain patterns. It is obvious that this data should be fed back into
the system to expand its possibilities and allow first, tentative
evaluations. Therefore, we log discourse history data for further
offline analysis.

4.1 Implementation
Our dialogue memory is modeled along the lines of the CrossTalk
scenario. It is implemented as a object-oriented class hierarchy
(Figure 8) where a session is the topmost concept. A session starts
when a user arrives and ends when the user leaves. During one
session several possible user interactions can occur:

� Yes/no question
� Personality choice
� Issues choice
� Role choice
� Yes question

A Yes question occurs when the user has been presented with a
question or choice but did not answer within a pre-defined time
span (time-out). Then, Cyberella will ask “Are you still there?”
and a “Yes” button appears. This we call a Yes question.

All interactions, with type and timestamp, are stored in the
session object. It also contains an arbitrary number of demo
objects which start when a user is shown a (automatically
generated) demo and ends as soon as the demo ends (or the user
leaves).

In CrossTalk, a demo consists of an automatically generated car
sales dialogue. The possible user feedback (see Section 2) can be
categorized into positive ("applause"), negative ("boo") and
question ("help"). The context memory regards the agents’
contributions as well as the user feedback as utterances, storing
speaker, addressee and content, e.g. if the user presses “boo” after
an utterance by agent Tina, the context memory records (XML
syntax):

<utterance speaker=”user” addressee=”Tina” content=”boo” />

For offline evaluation, the context memory writes log files to hard
disk each time a session ends (see Figure 9).

4.2 Application
Of what use is the context memory to the author who strives to
make the dialogues compelling and “personalized“? How can it
be exploited for automatic dialogue generation and what kind of
evaluation does it allow?
The authoring toolkit provides access functions to the context
memory allowing to retrieve the following data:
� elapsed time (duration)
� feedback (positive, negative, question)
� interactions (type)
Feedback can be differentiated by addressee (Tina or Ritchie). For
both feedback and interactions it is possible to request the number
of occurrences and the number of time-outs. With this data, we
are able to infer a user stereotype at runtime that can be used for
conditional authoring. A first, tentative range of stereotypes
includes: critical user (many negative feedback), active/passive
user (many/few interactions), liking/disliking for agent X (many
positive/negative feedback for agent X), lazy user (frequent
interaction time-out), tenacious user (long sessions).
Besides the memory data and user stereotypes, we also suggest a
range of measures that can be computed from the original data:
� feedback density (total/positive/negative)
� average response time (for each interaction type)

Figure 8: Context memory class hierarchy.

Figure 9:Context memory sample log file.

All the data can be used as conditions to trigger pre-scripted
scenes or to control the generation process of generated dialogue.
The access function values can also be inserted into pre-scripted
scenes by means of placeholders (so agents can talk about the
number of interactions etc.). To what effect this data can be used
will be explained in the following sections.

4.2.1 Context in pre-scripted scenes
For the human author who tries to create generic dialogue pieces
that nevertheless sound spontaneous and coherent, context
knowledge allows him/her to react to unusual patterns, e.g. a
positive response after a series of negative responses could trigger
a side remark like “It was about time you said something nice!”.
Reacting to measures like feedback density could mean that if the
density is too high, you need to ignore some feedback lest the
presentation become too fragmented. Here are some other
examples (X is either Tina or Ritchie, C is Cyberella):
� Liking for X → X says: “Oh, a real fan!”
� Disliking for X → X makes nervous gestures or does not

react at all
� Disliking for X + positive feedback → X says: “That was

about time!“
� Liking for X + negative feedback → X says: “Oops, just a

little accident“
� Lazy user → C says: “You don’t like talking, do you?“
� High feedback density → C says: “Why don’t you just let it

roll for a while” or start ignoring feedback.
� Liking could trigger some scene extensions, e.g. Tina/Ritchie

giving out profuse thanks, side remarks by Cyberella about
good vibrations, or by Ritchie on the topic of bribery...

� The user stereotype could guide the amount of options given
to the user. If the user is active you could provide him/her
with more frequent choices. If not, not.

The concept of Liking can trigger whole pre-scripted scenes (off-
duty mode) where the agents argue about the worth of “popularity
measured by empirical evidence” using data from context
memory.

4.2.2 Context in generated scenes
If the generated content is semantically tagged (e.g., interesting
vs. less interesting), one can guide the selection of plans (dialogue
strategies) with the help of context. For instance, reacting to less
interested users by playing more spectacular scenes or reacting to
a long session duration by playing shorter scenes. The way you
can use context in generated scenes is highly application-specific.
If the agents are equipped with models of personality and
emotions, the feedback can be processed by adapting the agents’
mental state which in turn effects their behavior [1].

4.2.3 Context for Evaluation
Evaluation is a burning issue in the animated agents community
[12]. Interactive systems have the great advantage that the
interaction implicitly contains data about the system’s effect on
users. Measuring the time spent with the system alone allows
tentative conclusions to be drawn about the attractiveness of the
system. Using CrossTalk as a platform for arbitrary scenarios that
are automatically generated, this kind of evaluation would allow
to compare different character designs, different versions of a

scenario, or whole dialogue generation engines – whether one is
more interesting than the other.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced the SceneMaker toolkit that provides
creative, non-programming experts with a simple scripting
language for the creation of rich, compelling content. The scenes
can be written using an ordinary word processor and are then
translated by our DialogueCompiler into scene plans. This allows
us to interweave such pre-scripted scenes with scenes
automatically generated at runtime. We demonstrated that
cascaded finite state machines are a powerful tool to define the
scene flow in interactive performances because they allow authors
to create transitions between scenes using probabilistic and
conditional edges, states and sub-states, and to introduce
concurrent events, e.g. to interrupt an ongoing scene and start a
new one based on some user action. A further enhancement for
modeling the scene flow is our modular approach where
supernodes can be used as subroutines. This enables an author to
reuse parts of the scene flow such as typical interaction patterns
(e.g. yes/no questions, good-bye routine) in other applications.
The SceneMaker also provides a context memory with access
functions that can be used by the author to make scenes user-
adaptive. It also functions as a logging facility for user profile
generation and offline evaluation.

Currently, an author needs some programming expertise to define
the scene flow with cascaded FSMs. In the near future we will
provide a visual tool that allows direct manipulation of the nodes
and edges representing the scenes and transitions. It will also
allow to expand and collapse nodes when traversing the scene
graph. On future occasions on fairs and conventions we will
empirically test the use of context for authoring and evaluation. In
the further development we will use the collected log files to
create more stereotypes and extend our range of measures.
Another aim is to create statistical models of behavior that can be
used to predict future behavior. In CrossTalk, we can exploit this
to predict interesting issues for the next demo that Cyberella can
suggest (“Let me guess which issues would interest you most for
the next demo”). Such statistical models can be differentiated
using stereotypes.

We hope that our framework with its author-centric approach will
contribute to the development of interactive applications in a
variety of fields, including interactive cinema, virtual drama, e-
commerce applications, without having to rely on low-level
programming work.

6. ACKNOWLEDGMENTS
Our work builds on the contributions of our colleagues in the
Intelligent User Interfaces department at DFKI: Stephan Baldes,
Thomas Schleiff and Markus Schmitt. We would also like to
thank our graphics designer Peter Rist for providing us with the
virtual actors Cyberella, Tina, and Ritchie.

Our work is funded by the EU as part of the IST projects NECA,
SAFIRA, MAGICSTER, and by the German Ministry for
Education and Research as part of the MIAU and VirtualHuman
projects.

7. REFERENCES
[1] André, E., Klesen, M., Gebhard, P., Allen, S., and Rist, T.

Exploiting models of personality and emotions to control the
behavior of animated interactive agents. In: Proc. of the
Agents’00 Workshop on Achieving Human-Like Behavior in
Interactive Animated Agents, 2000, 3-7.

[2] André, E., and Rist, T. Presenting through performing: On
the use of multiple animated characters in knowledge-based
presentation systems. In: Proc. of IUI’00, ACM Press, 1-8.

[3] André, E., Rist, T., van Mulken, S., Klesen, M., and Baldes,
S. The automated design of believable dialogues for
animated presentation teams. In: Cassell, J., Sullivan, J.,
Prevost, S., Churchill, E. (eds.). Embodied Conversational
Agents, Cambridge, MA, The MIT Press, 2000, 220-255.

[4] André, E., Rist, T., and Müller, M. WebPersona: A life-like
presentation agent for the world wide web. In: Proc. of the
IJCAI’97 workshop on Animated Interface Agents: Making
them Intelligent, Nagoya, 1997.

[5] Badler N., Webber B., Becket W., Geib C., Moore M.,
Pelachaud C., Reich B., Stone M. Planning and parallel
transition networks: animation’s new frontiers. In: Computer
Graphics and Applications. Shin S. Y., Kunii T. L. eds. New
York: World Scientific Publishing. 1995; 101-117.

[6] Baldes, S., Gebhard, P., Kipp, M., Klesen, M., Rist, P., Rist,
T., and Schmitt, M. The interactive CrossTalk installation:
Meta-theater with animated presentation agents. In: Proc. of
the PRICAI’02 workshop on Lifelike Animated Agents,
2002.

[7] Cassell, J., Sullivan, J, Prevost, S., and Churchill, E. (eds.).
Embodied conversational agents. The MIT Press, Cambridge
MA, 2000.

[8] Gebhard, P. Enhancing embodied intelligent agents with
affective user modelling. In: Proc. of UM’01 (doctoral
consortium summary). Springer, Berlin, 2001.

[9] Harel, D. Statecharts: A visual formalism for complex
systems. In: Science of Computer Programming, 8, 1987,
231-274.

[10] Huber, M. JAM: A BDI-theoretic mobile agent architecture.
In: Proc. of the Third Conference on Autonomous Agents,
ACM Press, 2001, 236-243.

[11] Laurel, B. Computers as theatre. Addison-Wesley, Reading
MA, 1993.

[12] McBreen, H.M., Anderson, J.A. and Jack, M.A. Evaluating
3D Embodied Conversational Agents In Contrasting VRML
Retail Applications. In: Proc. of the Agents’01 Workshop on
Multimodal Communication and Context in Embodied
Agents, 2001, 83-87.

[13] Microsoft Agent Software Development Kit, Microsoft
Press, Redmond, WA, 1999.

[14] Murray, J.H. Hamlet on the holodeck: The future of narrative
in cyberspace. The MIT Press, Cambridge MA, 2000.

[15] Perlin, K., and Goldberg, A. Improv: A system for scripting
interactive actors in virtual worlds. Computer Graphics, 29
(3), 1996.

[16] Prendinger, H. and Ishizuka, M. Social role awareness in
animated agents. In: Proc. of the Fifth Conference on
Autonomous Agents, ACM Press, 2001, 270–377.

[17] Prendinger, H. and Ishizuka, M. SCREAM: Scripting
emotion-based agent minds. In: Proc. of AAMAS’02, ACM
Press, 2002, 350-351.

[18] Rist, T., Baldes, S., Gebhard, P., Kipp, M., Klesen, M., Rist,
P., and Schmitt, M. CrossTalk: An interactive installation
with animated presentation agents. In: Proc. of COSIGN’02,
2002.

[19] Rist, T., Schmitt, M. Avatar arena: An attempt to apply
socio-physiological concepts of cognitive consistency in
avatar-avatar negotiation scenarios. In: Proc. of AISB’02
Symposium on Animated Expressive Characters for Social
Interactions, London, 2002, 79-84.

[20] Ryokai, K., Vaucelle, C., Cassell, J. Virtual peers as partners
in storytelling and literacy learning. In: Journal of Computer
Assisted Learning (in press).

[21] Saeyor, S., Binda, H., and Ishizuka, M. Visual authoring tool
for presentation agent based on multimodal markup
language. In: Proc. of Fifth International Conference on
Information Visualization (IV’01), IEEE, 2001, 563-570.

[22] Traum, D., and Rickel J. Embodied agents for multi-party
dialogue in immersive virtual worlds. In: Proc. of
AAMAS’02, ACM Press, 2002, 766-773.

