
INTERACTION ENGINEERING, WS 2015/16, UNIVERSITY OF APPLIED SCIENCES AUGSBURG 1

WINGED: Window Management with In-Air
Gestures on Desktop Computers

Simon Walter, Timo Wilhelm
Interaction Engineering Winter Semester 2015/16

Prof. Dr. Michael Kipp
University of Applied Sciences Augsburg

simon.walter | timo.wilhelm1@hs-augsburg.de

Abstract—WINGED is a research project which examines a

new way of interacting with window based desktop operating

systems. In contrast to the common mouse focused interaction

concepts, WINGED is offering a motion based system providing

intuitive gestures to the users. Due to the higher degree of

freedom compared to a mouse, extended interaction possibilities

offer a topic for further research. For our proof of concept

implementation, a Leap Motion controller is used to capture the

hand movement with infrared sensors. Furthermore a desktop

environment mockup, created in java-processing 3.0 is used to

give visual feedback to the user.

I. INTRODUCTION

Human-computer interaction has been dictated by the key-
board and mouse combination for over four decades. Espe-
cially the mouse has become a favourite for most users, while
others criticize the disruption of workflow, switching from
keyboard to mouse and back.
With the technological advancements of the last few years,
freehand computer interaction is becoming more and more
viable. Consumer motion tracking devices like the Leap Mo-
tion controller are making it possible to have science-fiction
become reality. With the new interaction methods come a range

Fig. 1: Hardware setup with Leap Motion controller

of new questions, like “what are the most intuitive gestures?”,
“how is the performance compared to a mouse?” and of
course “how can this be used for interaction with desktop
computers?”.
To answer some of those questions, we tried to simulate a
window based desktop operating system with common func-
tionalities like resizing and moving of windows, split screen,
minimizing and closing.
We used java-processing 3.0 (www.processing.org) to create a
prototype and implemented three simple gestures. We decided
to use a Leap Motion controller (www.leapmotion.com) to
track the hand movement of the user, as it is currently leading
consumer-based tracking hardware. It uses two infrared sensors
to create a 3D image of the hands and provides positional data
of all the bones and joints for the developer. We ended up with
a working proof of concept that helps to visualize the idea of
operation with motion controls instead of a mouse (See Fig.
1).

II. RELATED WORK

Relevant areas for our project include usability studies for
both interacting with a desktop environment and with gesture
interfaces.

Usability of gesture interfaces:

With the recent developments regarding virtual environments,
motion and gesture interfaces have seen a lot more
significance. Cabral et al. [2] have conducted studies on the
usability of gesture interfaces. While not directly applicable
on our project, this research has produced significant results in
relation to the performance of motion control. The conclusion
of this study shows, that the efficiency of tasks performed by
gesture interfaces, is considerably worse than those performed
by mouse movement. This result can be explained by the fact,
that most participants lack the experience for this interaction
method compared to the common mouse controls. Interviews
with the users have determined, that motion-based gesture
controls are most suitable for short and infrequent tasks, as
they are easy to learn.

Usability Analysis of Gesture-Based Control for Common

Desktop Tasks:

Extensive research regarding the use of gesture for desktop

www.processing.org
www.leapmotion.com


INTERACTION ENGINEERING, WS 2015/16, UNIVERSITY OF APPLIED SCIENCES AUGSBURG 2

control has been conducted by Farhadi-Niaki et al. [1]. The
studies have shown that users find arm gestures to be a
lot more fatiguing than finger gestures. Small scale finger
gestures have also been perceived as a more natural way
of interacting with a vision-based system. For the usability
study, the users have been asked to think of the most natural
way, they would interact with the objects on the screen. This
resulted in 85% of participants choosing the pinch gesture to
select and interact with the virtual items.

III. PROTOTYPE

We decided to use java-processing 3.0 (www.processing.org)
to implement our proof of concept, as it provides an easy
framework for rapid prototyping and libraries are available
to map the raw input data from the Leap Motion controller
(https://github.com/nok/leap-motion-processing).
The implementation of our prototype consists of two main
components: The gesture recognition that captures the input
data as 3D points and maps them to the associated win-
dow management functions. While the Leap Motion software
provides some rudimentary gesture recognition functions, we
decided to implement our own gesture detection code to be
able to better fit our requirements. For moving and scaling, the
difference in position between two frames is used to determine
the speed.

Fig. 2: Mockup of desktop operating system

Instead of having the software directly interact with the under-
lying operating system, we implemented a desktop mockup
with colored rectangles representing the windows. In early
stages of development we had a cursor representing the current
position of the mapped hand position. After some experi-
menting we decided to change it in favor of a relation based
system. The current iteration has the closest window to the
users mapped position selected, even if the user is not directly
hovering over a window. The top of the desktop representation
has a indication bar showing minimized windows and the
currently detected gesture to give the user more feedback on
what the system is recognizing.
The currently selected window is indicated by a red border
and put in the foreground. Minimizing a window is indicated
by the window flattening horizontally and moving towards the
top bar while closing is represented by a large red cross on

the window and the window rapidly closing vertically before
disappearing.

IV. INTERACTION MECHANISMS

The prototype maps gestures to different use cases of
managing desktop windows. We focused entirely on basic
managing functionalities which are necessary and useful to the
user. The prototype can be easily extended with functionalities
and gestures in the future.

A. Hand gestures
With the combination of different gestures the prototype

provides a large number of interaction mechanisms based on
just a few simple gestures. The project uses three different
gestures for its first prototype:

1) Pinch Gesture:
The most basic gesture of the project is the Pinch Gesture
(see Fig. 3). The prototype will recognize the pinch strength
of the users index and middle finger with the help of the library
leap-motion-processing. We used the strength and developed
our own gesture event by refining the values. The gesture is
mainly used for a drag-and-drop like behaviour of a window
and is enabled for both the left and the right hand.

Fig. 3: Pinch Gesture

2) Swipe Gesture:
The second gesture is the Swipe Gesture (See Fig. 4). It

consists of the two variants “swipe up” and “swipe down”. It
is based on a method of the leap-motion-processing library
which returns the angle of the hand. In the prototype the
gesture is implemented for the left hand only.

3) Expand Gesture:
The third gesture is the Expand Gesture (See Fig. 5). Like

the previous two gestures is it based on a functionality of the
leap-motion-processing library. This library provides the grab
strength of a hand, or rather how much a fist is clenched. With
this information we implemented the expand gesture, which
recognizes a fast unclenching of the fist. In the prototype only
the right hand is supported but an extension for the left hand
is possible.

www.processing.org
https://github.com/nok/leap-motion-processing


INTERACTION ENGINEERING, WS 2015/16, UNIVERSITY OF APPLIED SCIENCES AUGSBURG 3

Fig. 4: Swipe Gesture

Fig. 5: Expand Gesture

B. Use cases
Our concept aims at seven use cases, which are invoked by

using defined gestures in specific situations:

1) Move Window:
The first use case is Move Window. The user can select a
single window with a pinch gesture of his right hand and then
drag-and-drop the window to another position of the desktop.

2) Resize Window:
With a second pinch gesture of the left hand and the movement
of both hands from and to another, the user can increase and
decrease the size of a selected window.

3) Minimize Window:
The use case Minimize Window works similarly to the
previously explained Close Window action. The functionality
can be triggered by performing an upwards oriented swipe
motion with the left hand, while selecting a window with the
pinch gesture on the right hand. After minimizing a window,
a small circle in the top status bar indicates the condition the
window (See Fig. 6). All windows can be brought back to the
foreground by the Show all Windows movement.

4) Close Window:
By doing a pinch gesture with the right hand for selecting a
window and a swipe down gesture with the other hand, the
user can close a window. The closing is visualized with a red

Fig. 6: Circle indicator for minimized windows

cross and a shrinking animation. Unlike a minimized window,
a closed window cannot be opened again afterwards.

5) Split Screen Mode:
Split Screen Mode is an extension of the first use case. By
dragging a window within 10 pixels to either the right or
left side of the display, the window will be maximized to
the respective half of the screen (See Fig. 7). This way two
windows can be arranged in a split screen mode. This mode
can be exited by performing the Show all Windows action.

Fig. 7: Split screen Mode

6) Change Proportions of Split Screen:
The user can alter the proportion of the windows by pinching
anywhere on the screen and moving the middle separation
line right or left.

7) Show all Windows:
With the expand gesture, all windows can be shown. This
can be used to exit split screen mode, or to bring minimized
windows into the foreground. For the prototype, the windows
are arranged randomly.

V. OUTLOOK

A subsequent research in terms of a user study may deter-
mine which gestures feel the most natural and intuitive to the
users. Thereby it is useful to test multiple different gestures for
each functionality and to compare the results. The convenience



INTERACTION ENGINEERING, WS 2015/16, UNIVERSITY OF APPLIED SCIENCES AUGSBURG 4

and practicability of the gestures can be identified by a follow-
up user survey.
Furthermore the prototype can be transferred to a real operating
system in a future work. At the moment the prototype of
WINGED is a simple user interface built with Processing 3
representing a common operating system of a computer. With
the knowledge of this project the functionalities of WINGED
could be ported to Windows, Mac OS X, Linux and others.
In further projects the Leap Motion Keyboard by Hewlett-
Packard may be supportive. This keyboard has a built in Leap
Motion sensor which makes it the ideal device for future
versions of WINGED.

VI. CONCLUSION

In this project we captured in air gestures with a leap
motion controller to manage application windows on a mockup
desktop operating system. With this we wanted to provide a
solution for the following problem:
The functionality of managing windows on common operating
system is often hidden behind abstract buttons in a menu
bar on top of an application. These buttons are neither easily
understood nor intuitive to handle. Additionally the user needs
a mouse to use these operations. This leads to a permanent
switch from the keyboard to the mouse and back which
interrupts the users workflow constantly.
With WINGED there have been implemented seven use cases,
which try to solve these problems. Thereby different combi-
nations of simple gestures enable an easy usage. While the
prototype worked quite well in most situations, the quality of
tracking provided by the Leap Motion controller proves to be a
challenge in some situation, especially when a lot of ambient
infrared light is present (sunlight). As technology advances,
those problems will be overcome.
With this project we developed a first usable version of window
management functionalities with gestures. This can be used
as a foundation for subsequent improvements and exciting
advancements.

REFERENCES

[1] F. Farhadi-Niaki and S. A. Etemad and A. Ary, Design and Usability
Analysis of Gesture-Based Control for Common Desktop Tasks Uni-
versity of Ottawa, Carleton University, Ottawa: Springer-Verlag Berlin
Heidelberg, 2013.

[2] M. C. Cabrali and C. H. Morimoto and M. K. Zuffo, On the usability
of gesture interfaces in virtual reality environments University of Sao
Paulo: CLIHC ’05 Proceedings of the 2005 Latin American conference
on Human-computer interaction p. 100-108, New York, 2005.


	Introduction
	Related work
	Prototype
	Interaction mechanisms
	Hand gestures
	Pinch Gesture
	Swipe Gesture
	Expand Gesture

	Use cases
	Move Window
	Resize Window
	Minimize Window
	Close Window
	Split Screen Mode
	Change Proportions of Split Screen
	Show all Windows


	Outlook
	Conclusion
	References

